skip to main content


Search for: All records

Creators/Authors contains: "Witt, Christopher C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We explored the evolutionary radiation in the House Wren complex (Troglodytes aedon and allies), the New World’s most widely distributed passerine species. The complex has been the source of ongoing taxonomic debate. To evaluate phenotypic variation in the House Wren complex, we collected 81,182 single-nucleotide polymorphisms (SNPs) from restriction site associated loci (RADseq) and mitochondrial DNA (mtDNA) from samples representing the taxonomic and geographic diversity of the complex. Both datasets reveal deep phylogeographic structuring, with several topological discrepancies. The trees highlight the evolutionary distinctiveness of eastern and western T. aedon, which were sister taxa in the SNP tree and paraphyletic on the mtDNA tree. The RADseq data reveal a distinct T. a. brunneicollis group, although STRUCTURE plots suggest admixture between western T. aedon and northern Mexican samples of T. a. brunneicollis. MtDNA data show a paraphyletic arrangement of T. a. musculus on the tree, whereas the SNP tree portrays them as monophyletic. Island taxa are distinct in both datasets, including T. a. beani (Isla Cozumel), which appears derived from T. a. musculus in eastern Mexico, and T. sissonii (Isla Socorro) and T. tanneri (Isla Clarión) although the 2 datasets disagree on their overall phylogenetic placement. Although we had only mtDNA data for T. a. martinicensis from the Lesser Antilles, we found at least 4 distinct and paraphyletic taxa from Trinidad, Granada, St. Vincent islands, and Dominica. The House Wren complex showed strong differentiation in mtDNA and RADseq datasets, with conflicting patterns likely arising from some combination of sex-biased dispersal, incomplete lineage sorting, or selection on mtDNA. The most glaring discrepancies between these 2 datasets, such as the paraphyly of eastern and western North American House Wrens in the mtDNA tree, present excellent opportunities for follow-up studies on evolutionary mechanisms that underpin phylogeographic patterns.

     
    more » « less
  2. Animals developing at high elevation experience a suite of environmental challenges, most notably the low partial pressure of oxygen ( P O 2 ) in ambient air. In low P O 2 , bird species with high-elevation ancestry consistently demonstrate higher hatching success than lowland counterparts, suggesting highland birds are adapted to restricted O 2 (hypoxia) in early development. Haemoglobin (Hb), the critical oxygen-transport protein, is a likely target of P O 2 -related selection across ontogeny since Hb isoforms expressed at distinct developmental stages demonstrate different O 2 affinities. To test if Hb function is under P O 2 -related selection at different ontogenetic stages, we sampled a songbird, the hooded siskin ( Spinus magellanicus ), across two approximately 4000 m elevational transects. We sequenced all of the loci that encode avian Hb isoforms, and tested for signatures of spatially varying selection by comparing divergence patterns in Hb loci to other loci sampled across the genome. We found strong signatures of diversifying selection at non-synonymous sites in loci that contribute to embryonic ( α π , β H ) and definitive ( β A ) Hb isoforms. This is the first evidence for selection on embryonic haemoglobin in high-elevation Neoaves. We conclude that selection on Hb function at brief, but critical stages of ontogeny may be a vital component to high elevation adaptation in birds. 
    more » « less
  3. Free, publicly-accessible full text available May 1, 2024
  4. Townsend, Simon W. (Ed.)
    Vocal learning is thought to have evolved in 3 orders of birds (songbirds, parrots, and hummingbirds), with each showing similar brain regions that have comparable gene expression specializations relative to the surrounding forebrain motor circuitry. Here, we searched for signatures of these same gene expression specializations in previously uncharacterized brains of 7 assumed vocal non-learning bird lineages across the early branches of the avian family tree. Our findings using a conserved marker for the song system found little evidence of specializations in these taxa, except for woodpeckers. Instead, woodpeckers possessed forebrain regions that were anatomically similar to the pallial song nuclei of vocal learning birds. Field studies of free-living downy woodpeckers revealed that these brain nuclei showed increased expression of immediate early genes (IEGs) when males produce their iconic drum displays, the elaborate bill-hammering behavior that individuals use to compete for territories, much like birdsong. However, these specialized areas did not show increased IEG expression with vocalization or flight. We further confirmed that other woodpecker species contain these brain nuclei, suggesting that these brain regions are a common feature of the woodpecker brain. We therefore hypothesize that ancient forebrain nuclei for refined motor control may have given rise to not only the song control systems of vocal learning birds, but also the drumming system of woodpeckers. 
    more » « less
  5. Chapman, Mark (Ed.)
    Abstract Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them “taller” biogeographic barriers. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Abstract

    Predictable trait variation across environments suggests shared adaptive responses via repeated genetic evolution, phenotypic plasticity or both. Matching of trait–environment associations at phylogenetic and individual scales implies consistency between these processes. Alternatively, mismatch implies that evolutionary divergence has changed the rules of trait–environment covariation. Here we tested whether species adaptation alters elevational variation in blood traits. We measured blood for 1217 Andean hummingbirds of 77 species across a 4600‐m elevational gradient. Unexpectedly, elevational variation in haemoglobin concentration ([Hb]) was scale independent, suggesting that physics of gas exchange, rather than species differences, determines responses to changing oxygen pressure. However, mechanisms of [Hb] adjustment did show signals of species adaptation: Species at either low or high elevations adjusted cell size, whereas species at mid‐elevations adjusted cell number. This elevational variation in red blood cell number versus size suggests that genetic adaptation to high altitude has changed how these traits respond to shifts in oxygen availability.

     
    more » « less
  9. Papp, Balazs (Ed.)
    Abstract High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions. 
    more » « less